Ученые нашли способ экономить энергию и эффективнее кипятить воду

Воду кипятят много – будь то чашка чая, заваренная на кухне или на электростанции. Любые улучшения в эффективности этого процесса окажут значительное влияние на общее количество энергии, используемой для него каждый день.

Одним из таких улучшений может стать недавно разработанная обработка поверхностей, используемых для нагрева и испарения воды. Обработка улучшает два ключевых параметра, определяющих процесс кипения: коэффициент теплопередачи (КТР) и критический тепловой поток (КТР).

В большинстве случаев между ними существует компромисс — чем лучше одно, тем хуже другое. После многих лет поиска поисковый термин, лежащий в основе этой техники, нашел способ улучшить и то, и другое.

«Оба параметра важны, но оптимизировать оба параметра вместе довольно сложно, потому что они имеют внутренний компромисс», Ученый-биоинформатик Йонгсап Сонг говорит Из Национальной лаборатории Лоуренса Беркли в Калифорнии.

«Если у нас много пузырьков на поверхности кипения, то кипячение будет очень эффективным, но если у нас слишком много пузырьков на поверхности, они могут сливаться вместе, что может привести к образованию слоя пара над поверхностью кипения».

Любая паровая пленка между горячей поверхностью и водой создает сопротивление, что снижает эффективность теплопередачи и значение CHF. Чтобы обойти эту проблему, исследователи разработали три различных типа модификации поверхности.

Во-первых, добавляется ряд микротрубочек. Эта группа трубок шириной 10 мкм, расположенных на расстоянии около 2 мм друг от друга, контролирует образование пузырьков и удерживает пузырьки в полостях. Это предотвращает образование паровой пленки.

В то же время он уменьшает концентрацию пузырьков на поверхности, что снижает эффективность кипения. Чтобы решить эту проблему, исследователи представили меньшую обработку в качестве второй модификации, добавив только выступы и края нанометрового размера на поверхность полых трубок. Это увеличивает доступную площадь поверхности и увеличивает скорость испарения.

READ  Обнаружение огромного метеоритного кратера подо льдом Гренландии намного старше, чем считалось ранее

Наконец, микрополости были размещены в центре ряда столбцов на поверхности материала. Эти шлейфы ускоряют процесс вывода жидкости за счет увеличения площади поверхности. В сочетании эффективность кипячения значительно возрастает.

(Сонг и др.)

Вверху: видео, замедленное исследователями, показывает, как вода кипит на специально обработанной поверхности, вызывая образование пузырьков в определенных отдельных точках.

Поскольку наноструктуры также способствуют испарению под пузырьками, а колонны обеспечивают постоянную подачу жидкости к основанию пузырька, между поверхностью кипения и пузырьками может поддерживаться слой воды, что способствует максимальному тепловому потоку.

«Демонстрация нашей способности манипулировать поверхностью таким образом, чтобы получить оптимизацию, — это первый шаг». Инженер-механик Эвелин Ван говорит: из Массачусетского технологического института. «Тогда следующим шагом будет подумать о более масштабируемых подходах».

«Эти типы структур, которые мы делаем, не предназначены для масштабирования до их текущей формы».

Перенести работу из небольшой лаборатории в то, что можно будет использовать в коммерческих целях, будет непросто, но исследователи уверены, что это возможно.

Одной из проблем является поиск способов создания текстуры поверхности и «трех уровней» корректировок. Хорошей новостью является то, что существуют различные методы, которые можно изучить, и процедура должна работать и для различных типов жидкостей.

«Такие детали могут быть изменены, и это может стать нашим следующим шагом». поет говорит.

Поиск был опубликован в современные материалы.

Добавить комментарий

Ваш адрес email не будет опубликован.